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Abstract—Nowadays, Dynamic Contrast Enhanced-Magnetic
Resonance Imaging (DCE-MRI) is increasingly succeeding as a
complementary methodology for breast cancer, with Computer
Aided Detection/Diagnosis (CAD) systems becoming essential
technological tools to provide early detection and diagnosis of
tumours. Several CADs make use of machine learning, resulting
in a constant design of hand-crafted features aimed at better
assisting the physician. In recent years, Deep learning (DL)
approaches raised in popularity in many pattern recognition
tasks thanks to their ability to learn compact hierarchical features
that well fit the specific task to solve. If, on one hand, this
characteristic suggests to explore DL suitability for biomedical
image processing, on the other, it is important to take into account
the physiological inheritance of the images under analysis. With
this goal in mind, in this work we propose “3TP U-Net”, an
U-Shaped Deep Convolutional Neural Network that exploits
the well-known Three Time Points approach for the lesion
segmentation task. Results show that our proposal is able to
outperform not only the classical (non-deep) approaches but
also some very recent deep proposal, achieving a median Dice
Similarity Coefficient of 61.24%.

I. INTRODUCTION

Breast cancer is the tumour second cause of death in the

USA [1], with early detection resulting to be the most impor-

tant factor for a positive prognosis. World Health Organization

suggests mammography as the main breast cancer screening

methodology for its fast processing and high diagnostic value

[2], but, unfortunately, this methodology is not suitable for

under forty women (showing hyperdense glandular tissues).

Over the time, researchers have been focusing on Dynamic

Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI)

as a complementary tool for early detection of breast cancer,

demonstrating its potential both for staging newly diagnosed

patients and in assessing therapy effects [3].

DCE-MRI consists in the temporal acquisition of 3D vol-

umes before (pre) and after (post) the intravenous injection

of a paramagnetic contrast agent, such as Gadolinium-based,

resulting in 4-dimensional data (Fig. 1).

Fig. 1: A representation of the four dimensions (3 spatial +

1 temporal) of a typical breast DCE-MRI. In red, en exem-

plification showing a voxel (of coordinates x, y, z) acquisition

over different time points (t1 to tT ).

For each voxel, a Time Intensity Curve (TIC) is obtained.

The TIC shows the absorption and the release of the contrast

agent (Fig. 2) over time following the vascularisation charac-

teristics of the tissue under analysis [4].

To take advantage of the huge amount of data produced

by DCE-MRI, radiologists usually make use of Computer-

Aided Detection and Diagnosis (CAD) systems, namely tools

designed i) to assist in the detection and in the diagnosis of

tumour lesions and ii) to reduce the inter- and intra-observer

variability [5]. CAD usually consists of several modules to

face different tasks, such as lesion detection, segmentation,

diagnoses, etc. Among all, performing an accurate lesion

segmentation is very important in order to provide the lesion

classification module with input as free as possible of tissues

not belonging to the lesion. This task is usually not trivial,

time-consuming and error-prone and, therefore, over the years

several papers proposed to face it by making use of machine
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Fig. 2: Illustration of a Time Intensity Curve for a voxel:

the t axes represents the different acquisitions along time,

highlighting the pre-contrast (early) and postcontrast injection

phases; the y axes reports the acquired signal (and thus the

voxel luminance) variation.

learning. Although this allowed us to develop more accurate

automated procedures to assist the physician in the lesion

segmentation task, proposed works still were not able to

identify the definitive set of features and segmentation model.

In recent years, Deep learning (DL) approaches raised in

popularity in many pattern recognition tasks thanks to their

ability to learn compact hierarchical features that well fit

the specific task to solve. If, on one hand, this characteristic

suggests exploring DL suitability for biomedical image pro-

cessing, on the other, it is important to take into account the

physiological inheritance of the images under analysis.

The aim of this work is to exploit Deep Learning for the

automatic breast Lesion Segmentation task in DCE-MRI while

taking advantage of past learned experience [6] by training

the proposed architecture on images acquired at very specific

time points. In particular, we propose 3TP U-Net, an U-

Shaped Deep Convolutional Neural Network [7] that exploits

the well-known Three Time Points approach [8] to improve

lesion segmentation performances.

The paper’s sections are as follows: Section II outlines some

related works; Section III describes the proposal, also intro-

ducing the dataset and the evaluation modality used; Section

IV reports our results compared with those obtained by using

some literature proposals; finally, Section V discusses the

obtained results and provides some conclusions.

II. RELATED WORKS

The lesion segmentation task has been addressed in several

ways, with some authors proposing fully automated approachs

and other focusing only on semi-supervised ones [9]. Over

the years several papers showed that the most effective way

to perform the lesion segmentation by means of machine

learning was by using Dynamic Feature, a set of characteristics

modelling the shape of the TIC. More recently, after a Deep

Convolution Neural Network (D-CNN or simply CNN) [10]

won the 2012 Large Scale Visual Recognition Challenge

[11] (a popular 1000 classes image classification contest), an

increasing interest has starting to be paid by researches on

the study and on the application of CNN in biomedical image

processing [12], [13].

Focusing on breast lesion segmentation task, recently a

work [14] faced the problem with deep learning, proposing a

stacking of three parallel ConvLSTM [15] networks (to extract

temporal and 3D features) over a 4-layer U-Net (to perform

the segmentation). To the best of our knowledge, this is the

only work using CNN for breast lesion segmentation proposed

so far. However, since the task can be considered as a semantic
segmentation in which the input image has to be divided into

Region of Interests (ROIs) each referring to a lesion, every

CNN segmentation model could be potentially used.

One of the first work that addressed semantic segmentation

with CNN was SegNet [16], a deep convolutional encoder-

decoder architecture, followed by a pixel-wise classifier. The

role of the encoder network is to learn a compact representa-

tion of the input data, while the role of the decoder network is

to map the encoded features to a segmentation mask. Similarly,

the U-Net [7] model exploits an encoder-decoder architecture,

enhanced by the presence of skipping connections between the

two sides with the aim of i) exploiting encoding information

to improve the decoding stage and ii) to reduce the gradient

vanishing problem. Later in time, combining the ideas of Mo-

bileNets [17] Depthwise Separable Convolutions with U-Net,

in 2017 MobileU-Net1 was developed with the aim to build

a high speed, low parameter semantic segmentation model.

More recently, DeepLab [18] proposes to improve semantic

segmentation by exploiting dilated (atrous) convolution to

control the resolution at which feature responses are computed

(DeepLabV1), Atrous Spatial Pyramid Pooling (DeepLab2),

batch normalization (DeepLabv3) and depthwise separable

convolutions (DeepLabv3+).

III. MATERIAL AND METHODS

The problem we want to face consists in the segmentation of

3D lesions in breast DCE-MRI. As aforementioned, over the

years it has been shown the importance of intensity variations

due to contrast agent flowing, with authors designing new

dynamic features or exploiting deep networks specifically

designed to learn temporal relations.

In this work we take into account this DCE-MRI funda-

mental characteristic by properly feeding the segmentation

CNN with images acquired at very specific time points: the

idea is to perform the segmentation slice-by-slice, considering

the different acquisitions (along time) of the same slice as

channels within the image. In particular, since DCE-MRI

voxels are usually highly anisotropic, we choose to extract

slices along the projection with the higher resolution.

A. 3TP U-Net

The proposed approach consists of three main steps:

• Removing all the foreign tissues (bones, muscles, etc)

and air background, by using a proper breastmask [19]

• Extraction of temporal slices

1https://github.com/GeorgeSeif/Semantic-Segmentation-Suite
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Fig. 3: Proposed segmentation schema.

Fig. 4: 3TP Slice creation: slices extracted from the pre-

contrast (t0), from 2 (t1) and 6 minutes (t2) after the CA

injection volumes are fused in a 3 channels image.

• Slice-by-slice segmentation with a U-Net CNN

The core of the 3TP U-Net are the last two stages (Fig.

3). In fact, while the use of a breastmask is mainly needed

to reduce noise in the data, allowing the net to focus only

on the breast tissues, the choice of combining some well

defined temporal acquisitions as channels of the same image

is proposed to i) make the approach more general while ii)

feeding the net with data that can effectively synthesize the

whole contrast agent course. This last assertion is sustained by

the studies conducted by Degani [8] that showed how breast

lesion analysis can be improved by focusing on just three well-

defined temporal acquisitions: t0 (pre-contrast), t1 (2 minutes

after CA injection) and t2 (6 minutes after CA injection).

Therefore, in order to exploit this finding, for each slice we

create the equivalent three channels image by combining the

slices picked at the temporal instants proposed by the Three

Time Points (3TP) method, as first, second and third channel

of the same image (Fig. 4).

The so obtained images are fed to a U-Shaped CNN

(Fig. 5), an encoder-decoder architecture originally designed

for biomedical electron microscopy (EM) images multi-class

pixel-wise semantic segmentation [7]. The original U-Net has

been modified by setting output feature-map to one channel

allowing a faster convergence during the training step and by

applying zero-padding with a size-preserving strategy in order

to maintain the output shapes. Moreover, batch normalization

after each convolution is introduced with the aim of making

training step more stable.

Each side of the net consists in the repeated application

of some layers. In particular, the “descending” super-layer

structure consists of:

• 2D Convolution (3x3 kernel, zero-padding, stride 1)

• Rectified Linear Unit (ReLU) activation

• Batch Normalization

• 2D Convolution (3x3 kernel, zero-padding, stride 1)

• Rectified Linear Unit (ReLU) activation

• Batch Normalization

• Pooling (max-pool, stride 2)

with each super-layer performing a down-sampling step

halving the size of the image (using the max-pool operation)

and doubling the size of the feature channels. Similarly, the

right side performs the expansive path, with the “ascending”

super-layer structure consisting of:

• 2D Up-Convolution (2x2 kernel, zero-padding, stride 1)

• Concatenation with feature-map from the same level

• 2D Convolution (3x3 kernel, zero-padding, stride 1x1)

• Rectified Linear Unit (ReLU) activation

• Batch Normalization

• 2D Convolution (3x3 kernel, zero-padding, stride 1)

• Rectified Linear Unit (ReLU) activation

• Batch Normalization

The Up-Convolution is used to halve the feature channels by

mean of a trainable kernel. Then, the 2D Convolution (1x1

kernel, zero-padding, stride 1) maps each of the 64 output

features to the network output. Finally, a probabilistic output

is obtained by using the Sigmoid activation function.

B. Dataset

The proposal has been evaluated by using a private dataset

composed of 35 women breast DCE-MRI 4D data (average

age 40 years, in range 16-69) with benign or malignant lesions

histopathologically proven.

All patients underwent imaging with a 1.5T scanner (Mag-

netom Symphony, Siemens Medical System, Erlangen, Ger-

many) equipped with breast coil. DCE T1-weighted FLASH

3D coronal images were acquired (TR: 9.8ms, TE: 4.76 ms;

FA: 25 degrees; FoV 370x185 mm2; Image: 256x128; Thick-

ness: 2 mm; Gap: 0; Acquisition time: 56s; 80 slices spanning

entire breast volume). One series (t0) was acquired before

intravenous injection and 9 series (t1-t9) after. In particular,

the intravenous injection consists of 0.1 mmol/kg of a positive

paramagnetic contrast agent (gadolinium-diethylene-triamine

penta-acetic acid, Gd-DOTA, Dotarem, Guerbet, Roissy CdG

Cedex, France). In order to perform the injection, an auto-

matic system was used (Spectris Solaris EP MR, MEDRAD,

Inc.,Indianola, PA) and the injection flow rate was set to 2

ml/s followed by a flush of 10 ml saline solution at the same

rate. The lesions ground-truth was manually carried out by.

C. Experimental Setup

The proposed CNNs have been evaluated using the high-

level neural networks API Keras (Python 3.6) with TensorFlow

1.6 as back-end. Python scripts have been executed on a

physical server hosted in our university HPC center2 equipped

with 2 x Intel(R) Xeon(R) Intel(R) 2.13GHz CPUs (4 cores),

32GB RAM and a Nvidia Titan Xp GPU (Pascal family) with

12GB GRAM. In order to train the proposed U-Net model for

Lesion segmentation, a task-specific loss has been minimized:

loss = 1−DSC(ynetwork, ygoldstandard) (1)

DSC = (2 · n(GS ∩ SEG))/(n(GS) + n(SEG)) (2)

2http://www.scope.unina.it
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Fig. 5: The 3TP U-Net model for semantic segmentation of a breast slice in DCE-MRI. The left side implements the contracting

path, where the spatial-sizes (represented by the filters receptive field and by the output sizes) decrease and the feature-size

increases. The right side implements the expansive path, with the aim of increasing the image sizes.
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where DSC is the Dice Similarity Coefficient, calculated

considering the number of voxels per each volume n(·).
The network kernel weights have been initialized from a

random standard distribution N (0,
√
2/(fani + fano)) [20],

where fani and fano are respectively the input and output

size of the convolution layer, while the bias weights have been

initialized to a constant value of 0.1. ADAM optimizer [21]

was used, with β1 = 0.9, β2 = 0.999 and lr = 0.001 using an

inverse time decay strategy. All the techniques were compared

in terms of per-patient DSC value, since it is a simple and

useful summary measure of spatial overlap widely used in

biomedical image segmentation [22].

IV. RESULTS

This section reports the results of the described approach

compared with some deep and non-deep literature proposals.

To evaluate the effectiveness of the proposed approach, our

results were compared with those obtained by applying the

algorithms described in Section II, by using a 10-fold Cross

Validation (CV) ensuring that, to obtain a reliable and fair

evaluation, the slices from the same subject are always sepa-

rated across the CV folds. Given the characteristics of the used

dataset, slices were extracted along the coronal projection. For

the sake of completeness, we also considered three non-deep

approaches based on dynamic features: the one from Fusco et

al. [23] that proposed to use a multilayer perceptron (MLP);

the approach proposed by Torricelli et al. [24] that suggests

to use a simple threshold on the signal enhancement; an our

previous work [25] in which we proposed to use a Support

Vector Machine trained on features selected by an experienced

radiologist. All the algorithms have been reimplemented and

evaluated to the best of our interpretation of the authors’ papers

to guarantee a fair comparison. Finally, before comparing with

other approaches, we analyzed the impact that the 3TP input

has on the segmentation model.
Table I reports results obtained when all the 10 temporal

acquisition was used (10 channels image were created and the

U-Net was modified accordingly): results show that the pro-

posed approach improves the lesion segmentation effectiveness

by better enhancing the dynamic course of the contrast agent

while reducing the noise impact.
Table II compares our best result with respect to the

methods depicted in section III-C. Results show that deep-

based approaches always outperform non-deep ones, with

our 3TP U-Net performing better in terms of median DSC.

Figure 7 directly compares the results from each approach

to better highlight the benefit or our proposal with respect

to the competitors. It is worth noticing that the ConvLSTM-

based approach proposed in [15] is not reported here since,

despite our best efforts, we were not able to make the proposed

architecture converged on our dataset.
Finally, in order to allow a visual comparison between the

results obtained by using the approaches reported in Table

II, Figure 6 shows segmented ROIs for a slice of one of

the patients. As a reference, also the ground truth has been

reported.

V. DISCUSSIONS AND CONCLUSIONS

The aim of this work was to exploit Deep Learning for the
automatic breast Lesion Segmentation task in DCE-MRI, while
taking advantage of a past learned experience by training the

proposed architecture on images acquired at very specific time

points. To this aim, we proposed 3TP U-Net, an U-Shaped

Deep Convolutional Neural Networks [7] with the well-known

Three Time Points (3TP) approach [8] suitable exploited in

order to improve lesion segmentation performances.

The choices made were not solely guided by the enthusiasm

for deep learning, but the result of precise analysis of its ability

to learn compact hierarchical features that well fit the specific

task to solve, relieving the domain experts of continuously

designing task-oriented hand-crafted features, particularly in

domains lacking effective expert-designed ones [27]. Similarly,

the 3TP approach usage allows us to take into account for

the past discoveries about DCE-MRI automated analysis, in a
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TABLE I: Proposed approach variants comparison. DSC median values and relative 95% confidence intervals are reported

(obtained with a 10-folds CV).

Input Timepoints DSC [%] ACC [%] SPE[%] SEN[%]
10TP 57,69%±15,71% 99,99%±0,01% 100,00% 53,93%±19,44%
3TP 61,24%±11,84% 99,98%±0,02% 100,00% 68,28%±9,73%

(a) Overlap (b) Ground truth (c) 3TP U-Net (d) Contextual U-
Net [26]

(e) MobileU-Net

(f) SegNet [16] (g) SVM [25] (h) MLP [23] (i) Pixel-based [24]

Fig. 6: The final results of a zoomed pre-contrast slice from the input MRI volume (a). In particular (b) represents the ground

truth, and (c)-(i) the results of the approaches in Table II. The colours represent the True Positive (Green), True Negative

(White), False Negative (Red) and False Positive (Black) voxels.

TABLE II: Lesion segmentation results obtained with a 10-

folds CV. Median values and relative 95% confidence intervals

are reported (obtained with a 10-folds CV).

Authors Method DSC [%]
Our Proposal 3TP U-Net 61,24%±11,84%
Contestual U-Net [26] Contestual U-Net 57,69%±12,30%
MobileU-Net MobileU-Net 47,10%±10,90%
Badrinarayanan et al. [16] SegNet 31,60%±15,27%
Marrone et al. [25] SVM 19,07%±10,28%
Fusco et al. [23] MLP 02,91%±01,51%
Torricelli et al. [24] Pixel-based 02,80%±02,50%

Fig. 7: Segmentation results of the approaches in Table II

overlapped and compared with the ground truth.

simple, but effective way. In literature, most authors focusing

only on lesion detection, localization or classification [28],

[29] and, to the best of our knowledge, there is only a work

that also faced the lesion segmentation in breast DCE-MRI

by using a deep approach [14]. Differently from that work, in

which authors propose a stacking of three parallel ConvLSTM

[15] networks (to extract temporal and 3D features) over a 4-

layer U-Net (to perform the segmentation), our 3TP U-Net not

only is simpler (since there are no additional nets to train for

learning temporal features), but allows a more strict control
on what data will be used to perform the segmentation, by

picking only some specific acquisitions from the original 4D

volume. Moreover, this last point lays the foundations to define

a protocol independent approach, since the proposed 3TP U-
Net just needs 3 volumes acquisition closer to very specific

time intervals (defined in minutes) related to the contrast agent

injection. Results show that the 3TP U-Net operating slice-

by-slice over the 4D DCE-MRI volume can be effectively

used to improve the lesion segmentation process. In particular,

Table I not only shows that using “Three Time Points” allows

us to strongly improve performance, but also the benefits

of the breastmask to attenuate noise caused by extraneous

voxels. Table II provides an insightful perspective on the lesion

segmentation task, showing that non-deep approaches always

perform worse with respect to deep ones. It is worth noticing

that the wide confidence intervals reported in tables I and II,

are mostly affected by the reduced number of patients consid-

ered in this study. Therefore, although results demonstrate the

effectiveness of the proposed approach, in order to provide

clearer insights with narrower dispersion indexes, it is very

important to increase the number of involved subjects. Future

works will evaluate to what extent the proposed 3TP U-Net

is robust to multi-protocol and multi-tissue MRIs. Moreover,

in order to improve the obtained results, we are planning to

extend the proposed approach to other scanning procedures for

detection and diagnosis of tumours (i.e. DWI, PET or CT) by
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exploiting the ability of last generation scanner to acquire more

than one kind of images at once (for example PET-TC or PET-

MRI). On the other hand, it is worth noting that when using

images from different tools, the best results can be achieved

by relying on a very robust co-registration technique and a

deep knowledge of the most descriptive characteristics of each

study. Finally, we are considering to improve the obtained

results by mixing the three orthogonal acquisition planes in

a novel 3D approach and by considering a deeper network

(more than 5 layers).
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