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Abstract. Dynamic Contrast Enhanced-Magnetic Resonance Imaging
(DCE-MRI) is a diagnostic method for the detection and diagnosis of
breast cancer. Requiring the acquisition of images before and after the
injection of a paramagnetic contrast agent, it provides a large amount of
data that can hardly be analyzed without the use of a Computer Aided
Diagnosis (CAD) system, whose aim is to support radiologists in the
interpretation of medical images. Among the major issues in developing
a CAD for the breast DCE-MRI there is the lesion diagnosis, namely the
classification of lesioned tissues according to the tumour aggressiveness.
Several studies have been conducted so far to explore the applicability of
Deep Learning (DL) approaches to the automatic breast lesions classifi-
cation. However, we argue that solutions only relying on DL are not so
effective since past learned experience in the radiomics field should also
be kept in mind to better exploit the dynamics of contrast agent and
its effect on the acquired images. To this aim, we propose an approach
that exploits the well-known Three Time Points (3TP) idea to select
the specific time points that best highlight the tissues under analysis.
Our findings show that promising results can then be obtained by using
transfer learning, resulting in an approach that is able to outperform
both the classical (non-deep) and some very recent deep proposals.

Keywords: Deep learning · CNN · 3TP · DCE-MRI · Breast ·
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1 Introduction

The breast cancer worldwide number of cases has significantly increased since
the 1970s. This phenomenon is partly due to modern lifestyles, with recent stud-
ies showing that tumours are mostly an environmental rather than a genetic
disease, being the results of factors like pollution, smoking, nutrition, radiation,
stress, and traumas. Tumours grow and expand without evident signs, coming
out with symptoms only at an advanced stage of the disease. For this reason,
early detection is the key factor to improve breast neoplasm prognosis.
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In recent years, Dynamic Contrast Enhanced-Magnetic Resonance Imaging
(DCE-MRI) has demonstrated great potential in screening different tumours
tissues, gaining increasing popularity as an important complementary diagnostic
methodology for early detection of breast cancer [9]. It involves the intravenous
injection of a contrast agent (CA) in order to highlight both the physiological and
morphological characteristics of the tissue. The contrast agent is a paramagnetic
or super-paramagnetic substance (such as Gadolinium-based), characterized by
a specific absorption time that, spreading with different speed in function of the
tissue vascularization, allows to highlight the damaged tissues with respect to
the surrounding healthy ones.

A DCE-MRI study consists of MRI images taken before (pre-contrast series)
and after (post-contrast series) the intravenous injection of the contrast agent,
involving the acquisition of 3D volumes at different times, thus resulting in a 4D
volume (Fig. 1a) with 3 spatial dimensions (x, y, z) and one temporal dimension.
Each DCE-MRI voxel (a pixel in three-dimensional space) is associated with
a Time Intensity Curve (TIC) which reflects the absorption and the release of
the contrast agent (Fig. 1b), following the vascularisation characteristics of the
tissue under analysis [14].

Fig. 1. DCE-MRI and Time Intensity Curves. (a) A representation of the four dimen-
sions (3 spatial + 1 temporal) of a typical breast DCE-MRI scan; (b) some examples of
Time Intensity Curves: Type I corresponds to a straight (Ia) or curved (Ib) line where
the contrast absorption continues over the entire dynamic study (typical of healthy
tissues or benign neoplasms); Type II represents a plateau curve with a sharp bend
after the initial upstroke (typical of probably malignant lesions); finally, Type III shows
a washout time course (typical of malignant lesions).

Although a visual assessment of the lesion malignity could be performed by
analyzing the TIC, lesion diagnosis is a hard and time-consuming task because
(i) real curves are much noisier than the illustrative ones and (ii) the involved
amount of data is so huge that it can hardly be inspected without the use of a
Computer Aided Detection/Diagnosis (CAD) system. Focusing on the automatic
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CAD system, lesion diagnosis can be considered as the binary classification task
of distinguishing between benign and malignant tumours.

Performing lesion diagnosis by means of a classifier model requires to extract
the features that best suite the task and, to this aim, newer hand-crafted fea-
tures are continuously proposed by domain experts. In the last years, Deep
Learning (DL) based approaches have gained popularity in many pattern recog-
nition tasks, with Convolutional Neural Networks (CNNs) - artificial neural net-
works consisting in different convolutional layers stacked to form a deep archi-
tecture able to automatically learn a compact hierarchical representation of the
input - performing particularly well on images. Although this characteristic sug-
gests exploring CNNs also for biomedical images processing, accordingly to the
radiomics point of view (medical images are more than pictures [5]) our idea is
that the underlying physiological characteristics of DCE-MR images should also
be taken into account in order to effectively exploit all the available information.

In 1997 the study conducted by Degani [2] proved that it is possible to
effectively analyze DCE-MRI data considering only volumes at very specific
time points (3TP method), bringing a huge contribution to the research in
the radiomics field. Despite this, literature works do not seem to consider this
methodology, with authors mostly using deep learning approaches to extract the
features that best contribute to task solution.

In this work, we want to join the radiomics methodology and CNNs, in order
to exploit the medical experience and the deep learning capabilities for the auto-
matic breast lesion classification task in DCE-MRI. To this aim we propose 3TP-
CNN, a methodology that guides the choice of DCE-MRI volume to feed to CNNs,
exploring, as a case of study, the breast DCE-MRI. Finally, since the amount
of available training data is usually small, we propose to fine-tune a pre-trained
CNN after a replication-based data augmentation stage that demonstrated to
be effective when dealing with biomedical images.

The rest of the paper is organized as follows: Sect. 2 introduces the pro-
posed approach, the dataset used and the experimental setup; Sect. 3 reports
the obtained results, comparing them with those obtained by some competitors;
finally, Sect. 4, discusses those results and provides some conclusions.

2 3TP-CNN for Lesions Diagnosis

Lesion diagnosis consists in classifying Regions of Interest (ROIs) according to
the aggressiveness of the included tumour. The task can be addressed as the
binary classification problem of distinguishing between malignant and benign
lesions. To this aim, most literature proposals rely on hand-crafted features to
describe ROI characteristics such as the TIC behaviour (Dynamics Features),
the lesion’s texture (Textural Features) or shape (Morphological features),
etc. The works so far proposed mostly exploit the DCE-MRI volumes in three
way: by using all the available time series [11], by searching the best combi-
nation of acquisitions [6] or by arbitrarily fixing one of them [1]. Although all
these approaches show interesting performances, the main limitation is that their
applicability is strongly affected by the dataset characteristics.
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Fig. 2. The proposed 3TP-CNN classification schema: the first block shows the 3TP
lesions image extraction step generating a 3-channels images for each lesion by con-
sidering the time points suggested in [2]; in the second block, each slice is classified
separately; finally, in the third block, a unique label for each lesion is computed by
combining the results of all its slices.

To overcome this limitation, in this paper we propose to exploits the well-
known Three Time Points (3TP) [2] approach to select the specific time points
that best highlight the contrast agent absorption and then fine-tune a pre-
trained CNN for the actual slice-by-slice classification. In particular, we propose
to extract slices along the projection having the higher resolution, considering
the different acquisitions of the same slice along time as different channels within
the same image that we will feed to the CNN. This allows to perform the classi-
fication on images always related to the same physiological characteristics of the
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tissues under analysis, making our approach independent from the acquisition
protocol. To the best of our knowledge, this is the first work that exploits the
3TP-method for lesion diagnosis in DCE-MRI. The proposed approach consists
in three main steps (Fig. 2):

– 3TP Lesion Image extraction, in which for each slice containing a lesion,
a 3-channels image is created by stacking the three instances acquired at the
three time points suggested by Degani et al. [2]

– Slice Classification, during which each slice is classified as malignant or
benign

– Lesion Classification, in which each lesion is classified by combining results
of all its slices, producing a unique label for each lesion

2.1 3TP Lesion Image Extraction

As aforementioned in Sect. 1, a DCE-MRI is a 4D volume having 3 spatial dimen-
sions and a temporal one that represents the acquisition of 3D volumes over time.
Starting from it, we propose to extract 3TP images by cutting the sequence of
3D volumes along the axis having the highest resolution. This process generates
a set of 3D volumes, each representing the same section (slice) of the tissue seen
at different temporal instants. These volumes are extracted only for slices con-
taining a lesion. This is made possible by the lesion segmentation module (one of
the stages of a typical CAD system [12]) that localizes the lesion by identifying
the Region of Interest (ROI), namely a binary mask that bounds the portion of
the tissue within the lesion is.

Each 3D volume can be interpreted as a multi-channel image (since made of
slices referring to the very same portion of the tissue) whose number of channels
depends on the temporal instants considered during the extraction procedure. In
this work we propose to fix the considered number of temporal instant by taking
into account the 3TP method proposed by Degani [2], according to which the
lesion classification can be improved by taking contrast enhanced images (DCE-
MRI) at three time points identified by the time (in seconds) passed after the
contrast agent injection. Only three time points are taken into account: a pre-
contrast one (t0), one 2 min after the contrast agent injection (t1, corresponding
to the pick of contrast agent levels in tissues) and one 6 min after contrast agent
injection (t2, corresponding to the end of the CA washout). For each slice, the
resulting 3TP image is a 3-channel image composed of the same slice extracted
by the tree volumes acquired at the time instance nearest to t0, t1 and t2 (firt
block of Fig. 2).

The obtained images are further pre-processed by extracting only the portion
of the data within a squared box centered in the lesion centre and having size
1.5 times the maximum diameter of the lesion itself. Image values are then
normalized between 0 and 1, ensuring that, in the next stage, the CNN operates
on images having the same scale across different lesions. Finally, all the images
are resized to match the input layer size for the used CNN.
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2.2 Slices Classification

In order to assess the malignancy of each 3TP image, we propose to fine-tune a
CNN pre-trained on ImageNet [3]. It is worth noticing that we do not fix any
CNN, as long as it has a 3-channels input layer. We propose to exploit fine-tuning
since biomedical images datasets do not usually gather a proper amount of data
to effectively train a big CNN from scratch.

Despite the use of fine-tuning, the training procedure could still not be able to
properly learn images characteristics since the images could not be enough even
for a fine-tuning and because classes are usually very unbalanced. The small size
is mostly due to the small number of patients involved in DCE-MRI programs,
while the dataset unbalance is because the sizes of malignant and benign lesions
are usually very different, resulting in different number of slices per lesion type.

As a consequence, both a data augmentation and a balancing phase are
needed. In this work, two variants of data augmentation are explored. The first
consists in the application of random rotation and flipping, while the second
simply consists in replicating the data (slice replication). In both variants, the
dataset is balanced by replicating some randomly chosen slices belonging to the
minority class.

2.3 Lesion Classification

At the end of the previous stage, each lesion is associated with a probability of
being a malignant or a benign one. However, since the final aim of the work is to
classify each lesion, as a final step we combine the classes of all the slices from
a given lesion into a single class. In this work, among all the possible combining
strategies (CS) we considered:

– Majority voting (MV), in which the class of the lesion is the most common
class over all its slices

– Weighted Majority(WMV), that acts as MV, but in which each slice
contribution is weighted by its probability

– Biggest Slice(BS), in which the lesion is associated with the class of the
slice containing the biggest portion of the lesion

2.4 Experimental Setup

The proposed approach is general and can be applied to the classification of
lesions of different organs and by using different DCE-MRI protocols. The same
goes for the CNN used for the slice classification and on the other hyperparame-
ters. The experiments have been carried out using Pytorch, evaluating the code
on a physical server hosted in our university HPC center1 equipped with 2 ×
Intel(R) Xeon(R) Intel(R) 2.13 GHz CPUs (4 cores), 32 GB RAM and an Nvidia
Titan XP GPU (Pascal family) with 12 GB GRAM. Slice extraction step and
non-deep competitors approaches (Sect. 2.4) have been implemented in MAT-
LAB.
1 http://www.scope.unina.it.

http://www.scope.unina.it
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Dataset. In this work, we will focus on the breast lesion diagnosis. The dataset
is constituted of 39 women breast DCE-MRI (average age 50 years, in range 31–
74) with benign or malignant lesions histopathologically proven: 36 lesions were
malignant and 22 were benign. All patients underwent imaging with a 1.6 T scan-
ner (SymphonyTim, Siemens Medical System, Erlangen, Germany) equipped
with breast coil. DCE T1-weighted FLASH 3D axial fat-saturated images were
acquired (TR/TE: 5.08/2.39 ms; flip angle: 15◦; matrix: 384 × 384; thickness:
1.6 mm; acquisition time: 110 s; 128 slices spanning entire breast volume). One
series (t0) was acquired before and 8 series (t1–t8) after intravenous injection of
a positive paramagnetic contrast agent (gadolinium-diethylene-triamine penta-
acetic acid, Gd-DOTA, Dotarem, Guerbet, Roissy CdG Cedex, France).

An experienced radiologist delineated suspect ROIs using original and sub-
tractive image series, defined by subtracting t0 series from the t1 series. The
manual segmentation stage was performed in Osirix [13], that allows the user to
define ROIs at a sub-pixel level.

Related Works. In this work, we consider two classical (non-deep) and two
deep learning based works proposed in the literature to compare with the per-
formance of our approach. Fusco et al. [4] propose to use both Dynamic and
Morphological features, combining them by using a Multiple Classifier System,
in order to take into account the contrast agent concentration and the lesion
shape. Piantadosi et al. [11] propose to use Local Binary Patterns on Three
Orthogonal Planes (LBP-TOP) descriptor to provide a set of feature by thresh-
olding the neighbourhood of each pixel and considers the result as a binary
number. As threshold, the luminance value of the pixel in the centre of the
neighbourhood is considered. In [1], Antropova et al. explore the use of a CNN
(AlexNet, pre-trained on ImageNet) as feature extractor and then use an SVM
for the actual classification. To match the 3-channels input layer, the authors
propose to replicate slices extracted from the second post-contrast series. Finally,
Haarburger et al. [6] proposed the fine-tuning of a ResNet34 [7] CNN. To match
the 3-channels input layer, the authors propose to perform a grid-search among
all the possible combinations of time series.

3 Results

The protocol considered in this work has the axial slice as the one having the
higher resolution, therefore we extracted the 3TP images along this plane. Per-
formance is evaluated using a 10-fold cross-validation. Since the classification
stage is performed slice-by-slice, it is very important to perform a patient-based
instead of a slice-based cross-validation, in order to reliably compare different
models by avoiding mixing intra-patient slices in the evaluation phase. Slices
were replicated three times (obtaining a training dataset 3 times bigger than the
original one). As CNN we used AlexNet [8] since in our previous investigations
[10] it has shown the best trade-off between classification performance and train-
ing time. Performances are evaluated in terms of Accuracy (ACC), Sensitivity
(SEN), Specificity (SPE), F1-Score (F1) and Area under ROC curve (AUC).
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Tables 1 and 2 compare the proposed approach varying the model param-
eters, such as batch size, combining strategy and data augmentation in order
to find their best configuration. The fine-tuning of AlexNet has been performed
replacing the last fully connected layers. The best result was achieved by using
a learning rate of 10−5.

Table 3 compares our best configuration with some literature proposal
(Sect. 2.4) and with our proposal without the use of 3TP images as input (1TP
AlexNet with Slice Replication) to assess how the 3TP approach affects the per-
formance. The same parameters configuration of our best model was used, but
only the second post-contrast series from the 4D DCE-MRI data was taken. It
is worth noticing that, since Antropova et al. [1] do not provide enough informa-
tion about the SVM hyper-parameters settings, we performed an optimization
of the classification stage: the best results were obtained by using an SVM with
a polynomial kernel of degree equal to 1 and C = 1. Majority voting (MV) is
considered as combining strategy.

Table 1. Comparing different 3TP-AlexNet training modalities, by varying the slice
combining rule and batch size.

Batch Size CS ACC SPE SEN F1 AUC

3TP AlexNet 1 MV 69.23% 50.00% 85.71% 75.00% 67.86%

BS 69.23% 55.56% 80.95% 73.91% 70.5%

WMV 66.67% 44.44% 85.71% 73.47% 75.13%

4 MV 69.23% 44.44% 90.48% 76,00% 67.46%

BS 66.67% 44.44% 85.71% 73.47% 72.75%

WMV 69.23% 44.44% 90.48% 76.00% 78.31%

8 MV 69.23% 50.00% 85.71% 75.00% 67.86%

BS 66.67% 50.00% 80.95% 72.34% 72.09%

WMV 69.23% 50.00% 85.71% 75,00% 78.84%

16 MV 71.79% 55.56% 85.71% 76.6% 70.63%

BS 69.23% 50,00% 85.71% 75,00% 66.8%

WMV 69.23% 50,00% 85.71% 75,00% 77.25%

Table 2. Comparing different 3TP-AlexNet Slice Replication training modalities, by
varying the slice combining rule and batch size.

Batch Size CS ACC SPE SEN F1 AUC

3TP AlexNet with

Slice Replication

1 MV 71.79% 55.56% 85.71% 76.6% 70.63%

BS 74.36% 61.11% 85.71% 78.26% 81.48%

WMV 69.23% 50.00% 85.71% 75.00% 79.37%

4 MV 71.79% 61.11% 80.95% 75.56% 71.03%

BS 66.67% 50,00% 80.95% 72.34% 79.23%

WMV 71.79% 61.11% 80.95% 75.56% 76.98%

8 MV 69.23% 61.11% 76.19% 72.73% 68.65%

BS 71.79% 66.67% 76.19% 74.42% 73.68%

WMV 69.23% 61.11% 76.19% 72.73% 77.51%

16 MV 64.1% 44.44% 80.95% 70.83% 62.7%

BS 71.79% 55.56% 85.71% 76.6% 74.34%

WMV 64.1% 44.44% 80.95% 70.83% 74.87%
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Table 3. Comparison of the best results obtained by our approach with those achieved
by other state-of-the-art approaches and with the results obtained without exploiting
the 3TP idea.

Methodology ACC SPE SEN F1 AUC

3TP-AlexNet with Slice Replication 74.36% 61.11% 85.71% 78.26% 81.48%

1TP AlexNet with Slice Replication 66.67% 50.00% 80.95% 72.34% 75.93%

ResNet34 (Haarburger et al.) [6] 58.97% 33.33% 80.95% 68.00% 79.89%

AlexNet & SVM (Antropova et al.) [1] 64.10% 38.89% 85.71% 72.00% 62.30%

LBP-TOP (Piantadosi et al.) [11] 50.10% 48.72% 51.28% 52.53% 71.83%

Dyn.& Morph.+ MCS(Fusco et al.) [4] 62.07% 31.82% 80.56% 72.50% 56.19%

4 Discussion and Conclusions

The aim of this paper was to investigate automatic lesion malignancy classifi-
cation in DCE-MRI proposing a solution that joined the radiomics methodol-
ogy and Convolutional Neural Networks (CNNs), in order to exploit the medical
experience and the deep learning capabilities. For this reason, Three Time Points
approach (3TP), exploited in Slice extraction step, was applied in order to high-
light contrast agent absorption that is decisive in the discrimination between
malignant and benign lesions. In our opinion, the past learned experience
should always be taken into account because it could provide information that
may improve classifier performance. As a case of study, breast DCE-MRI was
considered.

Results presented in Tables 1 and 2 compare all the CNN-based approaches
obtained by varying the slice combining strategies and batch size. 3TP-AlexNet
Slice Replication with a batch size equal to 1 reaches the best results. The most
effective slice combining technique is to consider as lesion class the one predicted
by the slice containing the biggest ROI. This is reasonable since the biggest ROI
in a lesion is likely to bring the majority of the lesion malignancy information.

Table 3 compares our best approach with some methods proposed in the
literature, showing that our proposal is able to outperform both the classical
(non-deep) approaches and the deep proposals. Haarburger et al. [6] defined the
best set of contrast images exploring all the combination of the images provided
by the acquisition protocol, while, in our case, the set of contrast images that
should be considered is suggested by medical knowledge. This implies that our
proposal can be applied for all protocols involving at least 3 acquisitions: the only
constraint is the need to have acquisitions close to the times suggested by Degani.
Furthermore, Table 3 shows the significant impact that the 3TP method had on
system performance, reporting the results obtained by the implementation of a
methodology that does not exploit the 3TP method.

The obtained results confirm our idea of exploiting past learned experience
in order to provide the network with the medical knowledge that contributes to
lesion diagnosis. In addition, it is worth noting that our methodology is not only
independent of the protocol, but also of the CNN used for lesion classification:
in fact, the choice of AlexNet [8] is only a case-of-study choice.
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Since contrast agent absorption is decisive for lesion diagnosis, future work
will focus on exploring approaches that are able to further enhance the temporal
dynamics of the acquired signal, reflecting the absorption and release of contrast
agent. We argue that when performing lesion diagnosis by means of a classifier
system, performance depends on the dynamic or spatio-temporal information
coming from DCE-MRI data rather than on the CNN used for classification.
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